37static void reconstruct(
char* filename,
int N,
int M,
int Z,
int iteration,
int weight, fftw_complex *mem)
45 double tmp, epsilon=0.0000003;
51 my_N[0]=N;my_n[0]=ceil(N*1.2);
52 my_N[1]=N; my_n[1]=ceil(N*1.2);
60 nfft_precompute_lin_psi(&my_plan);
72 fin=fopen(
"weights.dat",
"r");
73 for(j=0;j<my_plan.M_total;j++)
75 fscanf(fin,
"%le ",&my_iplan.
w[j]);
87 double r=sqrt(j2*j2+k2*k2);
89 my_iplan.
w_hat[j*N+k]=0.0;
91 my_iplan.
w_hat[j*N+k]=1.0;
97 fin=fopen(filename,
"r");
103 for(j=0;j<my_plan.M_total;j++)
105 fscanf(fin,
"%le %le %le %le %le ",&my_plan.x[2*j+0],&my_plan.x[2*j+1], &tmp,
107 my_iplan.
y[j] = real + _Complex_I*imag;
111 if(z==0 && my_plan.flags &
PRE_PSI)
112 nfft_precompute_psi(&my_plan);
116 nfft_precompute_full_psi(&my_plan);
119 for(k=0;k<my_plan.N_total;k++)
123 solver_before_loop_complex(&my_iplan);
124 for(l=0;l<iteration;l++)
129 fprintf(stderr,
"%e, %i of %i\n",sqrt(my_iplan.
dot_r_iter),
130 iteration*z+l+1,iteration*Z);
131 solver_loop_one_step_complex(&my_iplan);
133 for(k=0;k<my_plan.N_total;k++) {
136 mem[(Z*N*N/2+z*N*N+ k)%(Z*N*N)] = my_iplan.
f_hat_iter[k];
143 solver_finalize_complex(&my_iplan);
146 nfft_finalize(&my_plan);
194 plan = fftw_plan_many_dft(1, &Z, N*N,
202 reconstruct(argv[1],N,M,Z,atoi(argv[5]),atoi(argv[6]),mem);
static void print(int N, int M, int Z, fftw_complex *mem)
print writes the memory back in a file output_real.dat for the real part and output_imag....
static void reconstruct(char *filename, int N, int M, int Z, int iteration, int weight, fftw_complex *mem)
reconstruct makes an inverse 2d-nfft for every slice