#include <mpr_numeric.h>
Definition at line 149 of file mpr_numeric.h.
◆ rootArranger() [1/2]
◆ ~rootArranger()
rootArranger::~rootArranger |
( |
| ) |
|
|
inline |
◆ rootArranger() [2/2]
◆ arrange()
void rootArranger::arrange |
( |
| ) |
|
Definition at line 883 of file mpr_numeric.cc.
884{
890
891
894 for ( r= 0; r <
anzr; r++ ) {
895
896
899 {
901 }
903 do {
907 {
908
909
914 {
917 break;
918 }
919 }
920 }
922 {
923 WarnS(
"rootArranger::arrange: precision lost");
925 }
927#if 0
929 {
930 Warn(
"rootArranger::arrange: No match? coord %d, root %d.",
xkoord,r);
931
932 WarnS(
"One of these ...");
934 {
937 {
939 }
942 }
943 WarnS(
" ... must match to one of these:");
945 {
947 }
948
949 }
950#endif
951 }
952 }
953}
Rational pow(const Rational &a, int e)
gmp_complex numbers based on
bool swapRoots(const int from, const int to)
EXTERN_VAR size_t gmp_output_digits
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
◆ solve_all()
void rootArranger::solve_all |
( |
| ) |
|
Definition at line 858 of file mpr_numeric.cc.
859{
862
863
865 for (
i= 0;
i <
rc;
i++ )
867 {
869 return;
870 }
871
873 for (
i= 0;
i <
mc;
i++ )
875 {
877 return;
878 }
879}
◆ success()
bool rootArranger::success |
( |
| ) |
|
|
inline |
◆ listOfRoots
Definition at line 5075 of file ipshell.cc.
5076{
5080
5082
5084 {
5086
5088 {
5091 for (
j= 0;
j < elem;
j++ )
5092 {
5094 {
5097 }
5098 else
5099 {
5102 }
5105 }
5110 }
5111
5112 }
5113 else
5114 {
5116 }
5117
5119}
gmp_complex * getRoot(const int i)
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
static BOOLEAN rField_is_long_C(const ring r)
int status int void size_t count
◆ found_roots
bool rootArranger::found_roots |
|
private |
◆ howclean
int rootArranger::howclean |
|
private |
◆ mc
◆ mu
◆ rc
◆ roots
The documentation for this class was generated from the following files: