10#include "factory/factory.h"
114 case LE:
return "<=";
115 case GE:
return ">=";
124 if (
s[1]==
'\0')
return s[0];
125 else if (
s[2]!=
'\0')
return 0;
128 case '.':
if (
s[1]==
'.')
return DOTDOT;
134 case '+':
if (
s[1]==
'+')
return PLUSPLUS;
138 case '<':
if (
s[1]==
'=')
return LE;
141 case '>':
if (
s[1]==
'=')
return GE;
143 case '!':
if (
s[1]==
'=')
return NOTEQUAL;
210 memset(buffer,0,
sizeof(buffer));
220 Print(
"..., %d char(s)",
l);
243 Print(
" %d x %d (%s)",
269 ((
intvec*)(
v->Data()))->cols());
break;
427 package savePack=currPack;
434 if (
strcmp(what,
"all")==0)
467 Werror(
"%s is undefined",what);
501 package save_p=currPack;
535 WarnS(
"Gerhard, use the option command");
572 rc +=
mm->rows() *
mm->cols();
576 rc+=((
lists)
v->Data())->nr+1;
597 WerrorS(
"write: need at least two arguments");
607 Werror(
"cannot write to %s",
s);
634 Werror(
"can not map from ground field of %s to current ground field",
714 WerrorS(
"argument of a map must have a name");
771 poly
p=(poly)
tmpW.data;
788 Warn(
"possible OVERFLOW in map, max exponent is %ld",
currRing->bitmask/2);
808 theMap->preimage=(
char*)1L;
866 Print(
"//defining: %s as %d-th syzygy module\n",
s,
i+1);
871 Warn(
"cannot define %s",
s);
983 l->m[0].rtyp=u->
Typ();
984 l->m[0].data=u->
Data();
987 l->m[0].attribute=*a;
994 l->m[0].attribute=
NULL;
1032 if (weights!=
NULL)
delete weights;
1056 if (weights!=
NULL)
delete weights;
1063#define BREAK_LINE_LENGTH 80
1163 res->m[
i].data = (
void *)
save->set;
1175 res->m[
i].data = (
void *)
save->set;
1201 const char *
id =
name->name;
1206 WerrorS(
"object to declare is not a name");
1216 Werror(
"can not define `%s` in other package",
name->name);
1269 tmp.data=
at->CopyA();
1277 WerrorS(
"branchTo can only occur in a proc");
1288 short *t=(
short*)
omAlloc(
l*
sizeof(
short));
1292 for(
i=1;
i<
l;
i++,
h=
h->next)
1297 Werror(
"arg %d is not a string",
i);
1306 Werror(
"arg %d is not a type name",
i);
1313 Werror(
"last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1326 if(
pi->data.s.body==
NULL )
1451 WerrorS(
"object with a different type exists");
1469 Warn(
"'%s': no such identifier\n",
v->
name);
1472 package frompack=v->req_packhdl;
1500 Werror(
"`%s` not found",
v->Name());
1518 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1544 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1595 WerrorS(
"no ring active (9)");
1637 WarnS(
"package not found\n");
1658 #ifndef TEST_ZN_AS_ZP
1669 r->cf->has_simple_Inverse=1;
1682 r->block0 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1683 r->block1 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1702 if ((r==
NULL)||(r->VarOffset==
NULL))
1741 L->
m[0].
data=(
void *)(
long)r->cf->ch;
1747 for(
i=0;
i<r->N;
i++)
1770 if (r->block1[
i]-r->block0[
i] >=0 )
1772 j=r->block1[
i]-r->block0[
i];
1775 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
1777 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j];
1779 else switch (r->order[
i])
1788 for(;
j>=0;
j--) (*iv)[
j]=1;
1798 LLL->
m[1].
data=(
void *)iv;
1799 LL->m[
i].data=(
void *)LLL;
1813 L->
m[3].
data=(
void *)q;
1832 L->
m[0].
data=(
void *)0;
1866 L->
m[0].
data=(
void *)0;
1909 LL->m[1].data=(
void *) C->modExponent;
1936 LL->m[1].data=(
void *)
R->cf->modExponent;
1949 WerrorS(
"ring with polynomial data must be the base ring or compatible");
1960 else if ( C->extRing!=
NULL )
1970 Lc->m[0].data=(
void*)(
long)C->m_nfCharQ;
1977 Lc->m[1].data=(
void*)
Lv;
1988 Loo->m[1].data=(
void *)iv;
1991 Lo->m[0].data=(
void*)
Loo;
1994 Lc->m[2].data=(
void*)
Lo;
2000 res->data=(
void*)
Lc;
2005 res->data=(
void *)(
long)C->ch;
2019 for(
i=0;
i<r->N;
i++)
2046 assume( r->block0[
i] == r->block1[
i] );
2047 const int s = r->block0[
i];
2053 else if (r->block1[
i]-r->block0[
i] >=0 )
2055 int bl=
j=r->block1[
i]-r->block0[
i];
2063 j+=r->wvhdl[
i][
bl+1];
2066 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
2068 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j+(
j>
bl)];
2070 else switch (r->order[
i])
2079 for(;
j>=0;
j--) (*iv)[
j]=1;
2089 LLL->
m[1].
data=(
void *)iv;
2090 LL->m[
i].data=(
void *)LLL;
2097 if (r->qideal==
NULL)
2128 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2146 L->
m[0].
data=(
char*)r->cf; r->cf->ref++;
2161 || (r->qideal !=
NULL)
2168 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2193 else if ( r->cf->extRing!=
NULL )
2203 Lc->m[0].data=(
void*)(
long)r->cf->m_nfCharQ;
2210 Lc->m[1].data=(
void*)
Lv;
2221 Loo->m[1].data=(
void *)iv;
2224 Lo->m[0].data=(
void*)
Loo;
2227 Lc->m[2].data=(
void*)
Lo;
2238 L->
m[0].
data=(
void *)(
long)r->cf->ch;
2243 L->
m[0].
data=(
void *)r->cf;
2258 WerrorS(
"invalid coeff. field description, expecting 0");
2266 WerrorS(
"invalid coeff. field description, expecting precision list");
2274 WerrorS(
"invalid coeff. field description list, expected list(`int`,`int`)");
2277 int r1=(
int)(
long)
LL->m[0].data;
2278 int r2=(
int)(
long)
LL->m[1].data;
2288 WerrorS(
"invalid coeff. field description, expecting parameter name");
2309 unsigned int modExponent = 1;
2339 modExponent = (
unsigned long)
LL->m[1].data;
2349 WerrorS(
"Wrong ground ring specification (module is 1)");
2352 if (modExponent < 1)
2354 WerrorS(
"Wrong ground ring specification (exponent smaller than 1)");
2363 else if (modExponent > 1)
2366 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
2377 info.exp= modExponent;
2388 info.exp= modExponent;
2401 for(
i=0;
i<
R->N-1;
i++)
2403 for(
j=
i+1;
j<
R->N;
j++)
2456 poly
p=(poly)
v->m[
i].Data();
2462 Werror(
"var name %d must be a string or a ring variable",
i+1);
2468 Werror(
"var name %d must be `string` (not %d)",
i+1,
v->m[
i].Typ());
2475 WerrorS(
"variable must be given as `list`");
2491 for (
int j=0;
j < n-1;
j++)
2498 &&(
strcmp((
char*)
vv->m[0].Data(),
"L")==0))
2507 Werror(
"illegal argument for pseudo ordering L: %d",
vv->m[1].Typ());
2514 if (bitmask!=0) n--;
2530 WerrorS(
"ordering must be list of lists");
2537 if (
strcmp((
char*)
vv->m[0].Data(),
"L")==0)
2546 Werror(
"ordering name must be a (string,intvec), not (string,%s)",
Tok2Cmdname(
vv->m[1].Typ()));
2551 if (
j_in_R==0)
R->block0[0]=1;
2574 int l=
si_max(1,(
int)(
long)
vv->m[1].Data());
2576 for(
int i=0;
i<
l;
i++) (*iv)[
i]=1;
2606 Print(
"R->block0[j_in_R]=%d,N=%d\n",
R->block0[
j_in_R],
R->N);
2666 if (((*iv)[
i]!=1)&&(
iv_len!=1))
2669 Warn(
"ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2693 const int s = (*iv)[0];
2704 WerrorS(
"ring order not implemented");
2712 WerrorS(
"ordering name must be a (string,intvec)");
2738 Werror(
"ordering incomplete: size (%d) should be %d",
R->block1[
j_in_R],
R->N);
2744 Werror(
"not enough variables (%d) for ordering block %d, scanned so far:",
R->N,
j_in_R+1);
2774 WerrorS(
"ordering must be given as `list`");
2777 if (bitmask!=0) {
R->bitmask=bitmask;
R->wanted_maxExp=bitmask; }
2809 int ch = (
int)(
long)L->
m[0].
Data();
2819 Warn(
"%d is invalid characteristic of ground field. %d is used.", ch,
l);
2822 #ifndef TEST_ZN_AS_ZP
2833 R->cf->has_simple_Inverse=1;
2852 int ch = (
int)(
long)
LL->m[0].Data();
2862 param.GFPar_name = (
const char*)(((
lists)(
LL->m[1].Data()))->m[0].Data());
2875 WerrorS(
"could not create the specified coefficient field");
2879 if( extRing->qideal !=
NULL )
2899 WerrorS(
"coefficient field must be described by `int` or `list`");
2905 WerrorS(
"could not create coefficient field described by the input!");
2917 #ifdef HAVE_SHIFTBBA
2925 if ((bitmask!=0)&&(
R->wanted_maxExp==0))
R->wanted_maxExp=bitmask;
2938 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
2975 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
3020 WerrorS(
"q-ideal must be given as `ideal`");
3089 int n=(
int)(
long)
b->Data();
3097 if ((d>n) || (d<1) || (n<1))
3185 if ((fullres==
NULL) && (minres==
NULL))
3239 syzstr->fullres = fullres;
3305 res->data=(
char *)iv;
3313 for (
i = n;
i!=0;
i--)
3314 (*iv)[
i-1] =
x[
i + n + 1];
3332 res->data=(
void *)
b;
3358 spec.
mu = (
int)(
long)(
l->m[0].Data( ));
3359 spec.
pg = (
int)(
long)(
l->m[1].Data( ));
3360 spec.
n = (
int)(
long)(
l->m[2].Data( ));
3368 for(
int i=0;
i<spec.
n;
i++ )
3371 spec.
w[
i] = (*mul)[
i];
3402 for(
int i=0;
i<spec.
n;
i++ )
3406 (*mult)[
i] = spec.
w[
i];
3416 L->
m[0].
data = (
void*)(
long)spec.
mu;
3417 L->
m[1].
data = (
void*)(
long)spec.
pg;
3418 L->
m[2].
data = (
void*)(
long)spec.
n;
3469 WerrorS(
"the list is too short" );
3472 WerrorS(
"the list is too long" );
3476 WerrorS(
"first element of the list should be int" );
3479 WerrorS(
"second element of the list should be int" );
3482 WerrorS(
"third element of the list should be int" );
3485 WerrorS(
"fourth element of the list should be intvec" );
3488 WerrorS(
"fifth element of the list should be intvec" );
3491 WerrorS(
"sixth element of the list should be intvec" );
3495 WerrorS(
"first element of the list should be positive" );
3498 WerrorS(
"wrong number of numerators" );
3501 WerrorS(
"wrong number of denominators" );
3504 WerrorS(
"wrong number of multiplicities" );
3508 WerrorS(
"the Milnor number should be positive" );
3511 WerrorS(
"the geometrical genus should be nonnegative" );
3514 WerrorS(
"all numerators should be positive" );
3517 WerrorS(
"all denominators should be positive" );
3520 WerrorS(
"all multiplicities should be positive" );
3524 WerrorS(
"it is not symmetric" );
3527 WerrorS(
"it is not monotonous" );
3531 WerrorS(
"the Milnor number is wrong" );
3534 WerrorS(
"the geometrical genus is wrong" );
3538 WerrorS(
"unspecific error" );
3574 ( fast==2 ? 2 : 1 ) );
3584 ( fast==0 || (*node)->weight<=
smax ) )
3629 (*node)->nf =
search->nf;
3646 if( (*node)->weight<=(
Rational)1 ) pg++;
3647 if( (*node)->weight==
smax ) z++;
3651 node = &((*node)->next);
3702 n = ( z > 0 ? 2*n - 1 : 2*n );
3746 (*den) [
n2] = (*den)[
n1];
3747 (*mult)[
n2] = (*mult)[
n1];
3755 if( fast==0 || fast==1 )
3779 (*L)->m[0].data = (
void*)(
long)
mu;
3796 (*L)->m[0].data = (
void*)(
long)
mu;
3797 (*L)->m[1].data = (
void*)(
long)pg;
3798 (*L)->m[2].data = (
void*)(
long)n;
3799 (*L)->m[3].data = (
void*)
nom;
3800 (*L)->m[4].data = (
void*)
den;
3801 (*L)->m[5].data = (
void*)
mult;
3810 #ifdef SPECTRUM_DEBUG
3811 #ifdef SPECTRUM_PRINT
3812 #ifdef SPECTRUM_IOSTREAM
3813 cout <<
"spectrumCompute\n";
3814 if( fast==0 )
cout <<
" no optimization" << endl;
3815 if( fast==1 )
cout <<
" weight optimization" << endl;
3816 if( fast==2 )
cout <<
" symmetry optimization" << endl;
3819 if( fast==0 )
fputs(
" no optimization\n",
stdout );
3820 if( fast==1 )
fputs(
" weight optimization\n",
stdout );
3821 if( fast==2 )
fputs(
" symmetry optimization\n",
stdout );
3865 #ifdef SPECTRUM_DEBUG
3866 #ifdef SPECTRUM_PRINT
3867 #ifdef SPECTRUM_IOSTREAM
3868 cout <<
"\n computing the Jacobi ideal...\n";
3870 fputs(
"\n computing the Jacobi ideal...\n",
stdout );
3879 #ifdef SPECTRUM_DEBUG
3880 #ifdef SPECTRUM_PRINT
3881 #ifdef SPECTRUM_IOSTREAM
3895 #ifdef SPECTRUM_DEBUG
3896 #ifdef SPECTRUM_PRINT
3897 #ifdef SPECTRUM_IOSTREAM
3899 cout <<
" computing a standard basis..." << endl;
3902 fputs(
" computing a standard basis...\n",
stdout );
3910 #ifdef SPECTRUM_DEBUG
3911 #ifdef SPECTRUM_PRINT
3914 #ifdef SPECTRUM_IOSTREAM
3962 #ifdef SPECTRUM_DEBUG
3963 #ifdef SPECTRUM_PRINT
3964 #ifdef SPECTRUM_IOSTREAM
3965 cout <<
"\n computing the highest corner...\n";
3967 fputs(
"\n computing the highest corner...\n",
stdout );
3991 #ifdef SPECTRUM_DEBUG
3992 #ifdef SPECTRUM_PRINT
3993 #ifdef SPECTRUM_IOSTREAM
4006 #ifdef SPECTRUM_DEBUG
4007 #ifdef SPECTRUM_PRINT
4008 #ifdef SPECTRUM_IOSTREAM
4009 cout <<
"\n computing the newton polygon...\n";
4011 fputs(
"\n computing the newton polygon...\n",
stdout );
4018 #ifdef SPECTRUM_DEBUG
4019 #ifdef SPECTRUM_PRINT
4028 #ifdef SPECTRUM_DEBUG
4029 #ifdef SPECTRUM_PRINT
4030 #ifdef SPECTRUM_IOSTREAM
4031 cout <<
"\n computing the weight corner...\n";
4033 fputs(
"\n computing the weight corner...\n",
stdout );
4043 #ifdef SPECTRUM_DEBUG
4044 #ifdef SPECTRUM_PRINT
4045 #ifdef SPECTRUM_IOSTREAM
4058 #ifdef SPECTRUM_DEBUG
4059 #ifdef SPECTRUM_PRINT
4060 #ifdef SPECTRUM_IOSTREAM
4061 cout <<
"\n computing NF...\n" << endl;
4072 #ifdef SPECTRUM_DEBUG
4073 #ifdef SPECTRUM_PRINT
4075 #ifdef SPECTRUM_IOSTREAM
4103 WerrorS(
"polynomial is zero" );
4106 WerrorS(
"polynomial has constant term" );
4109 WerrorS(
"not a singularity" );
4112 WerrorS(
"the singularity is not isolated" );
4115 WerrorS(
"highest corner cannot be computed" );
4118 WerrorS(
"principal part is degenerate" );
4124 WerrorS(
"unknown error occurred" );
4141 WerrorS(
"only works for local orderings" );
4149 WerrorS(
"does not work in quotient rings" );
4195 WerrorS(
"only works for local orderings" );
4200 WerrorS(
"does not work in quotient rings" );
4259 else if(
l->nr > 5 )
4297 int mu = (
int)(
long)(
l->m[0].Data( ));
4298 int pg = (
int)(
long)(
l->m[1].Data( ));
4299 int n = (
int)(
long)(
l->m[2].Data( ));
4310 if( n !=
num->length( ) )
4314 else if( n !=
den->length( ) )
4338 for(
i=0;
i<n;
i++ )
4340 if( (*
num)[
i] <= 0 )
4344 if( (*
den)[
i] <= 0 )
4348 if( (*
mul)[
i] <= 0 )
4360 for(
i=0,
j=n-1;
i<=
j;
i++,
j-- )
4363 (*den)[
i] != (*den)[
j] ||
4364 (*mul)[
i] != (*mul)[
j] )
4374 for(
i=0,
j=1;
i<n/2;
i++,
j++ )
4376 if( (*
num)[
i]*(*den)[
j] >= (*num)[
j]*(*den)[
i] )
4386 for(
mu=0,
i=0;
i<n;
i++ )
4391 if(
mu != (
int)(
long)(
l->m[0].Data( )) )
4400 for( pg=0,
i=0;
i<n;
i++ )
4402 if( (*
num)[
i]<=(*den)[
i] )
4408 if( pg != (
int)(
long)(
l->m[1].Data( )) )
4437 WerrorS(
"first argument is not a spectrum:" );
4442 WerrorS(
"second argument is not a spectrum:" );
4479 WerrorS(
"first argument is not a spectrum" );
4484 WerrorS(
"second argument should be positive" );
4521 WerrorS(
"first argument is not a spectrum" );
4526 WerrorS(
"second argument is not a spectrum" );
4536 res->data = (
void*)(
long)(
s1.mult_spectrumh(
s2 ));
4538 res->data = (
void*)(
long)(
s1.mult_spectrum(
s2 ));
4569 WerrorS(
"Ground field not implemented!");
4589 LP->
m= (
int)(
long)(
v->Data());
4595 LP->
n= (
int)(
long)(
v->Data());
4601 LP->
m1= (
int)(
long)(
v->Data());
4607 LP->
m2= (
int)(
long)(
v->Data());
4613 LP->
m3= (
int)(
long)(
v->Data());
4616 Print(
"m (constraints) %d\n",LP->
m);
4617 Print(
"n (columns) %d\n",LP->
n);
4641 lres->m[4].data=(
void*)(
long)LP->
m;
4644 lres->m[5].data=(
void*)(
long)LP->
n;
4677 gls= (poly)(arg1->
Data());
4678 int howclean= (
int)(
long)arg3->
Data();
4682 WerrorS(
"Input polynomial is constant!");
4691 rlist->Init( r[0] );
4692 for(
int i=r[0];
i>0;
i--)
4707 WerrorS(
"Ground field not implemented!");
4714 unsigned long int ii = (
unsigned long int)arg2->
Data();
4741 WerrorS(
"The input polynomial must be univariate!");
4751 for (
i= deg;
i >= 0;
i-- )
4766 for (
i=deg;
i >= 0;
i--)
4774 roots->
solver( howclean );
4782 rlist->Init( elem );
4786 for (
j= 0;
j < elem;
j++ )
4795 for (
j= 0;
j < elem;
j++ )
4833 int tdg= (
int)(
long)arg3->
Data();
4840 WerrorS(
"Last input parameter must be > 0!");
4848 if (
m != (
int)
pow((
double)tdg+1,(
double)n) )
4850 Werror(
"Size of second input ideal must be equal to %d!",
4851 (
int)
pow((
double)tdg+1,(
double)n));
4858 WerrorS(
"Ground field not implemented!");
4864 for (
i= 0;
i < n;
i++ )
4873 WerrorS(
"Elements of first input ideal must not be equal to -1, 0, 1!");
4882 WerrorS(
"Elements of first input ideal must be numbers!");
4890 for (
i= 0;
i <
m;
i++ )
4899 WerrorS(
"Elements of second input ideal must be numbers!");
4929 else gls= (
ideal)(
v->Data());
4944 if (gls->m[
j]!=
NULL)
4950 WerrorS(
"Newton polytope not of expected dimension");
4964 unsigned long int ii=(
unsigned long int)
v->Data();
4972 else howclean= (
int)(
long)
v->Data();
5001 WerrorS(
"Error occurred during matrix setup!");
5008 smv=
ures->accessResMat()->getSubDet();
5014 WerrorS(
"Unsuitable input ideal: Minor of resultant matrix is singular!");
5032 int c=
iproots[0]->getAnzElems();
5050 WerrorS(
"Solver was unable to find any roots!");
5091 for (
j= 0;
j < elem;
j++ )
5153 Warn(
"deleting denom_list for ring change to %s",
IDID(
h));
5195 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5200 (*iv)[
i]= - (*iv)[
i];
5209 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5214 (*iv)[
i]= -(*iv)[
i];
5229 (*iv2)[2]=iv->
length()-2;
5247 (*iv2)[2]=iv->
length()-2;
5288 (*iv)[2] += (*iv2)[2];
5303 int last = 0, o=0, n = 1,
i=0, typ = 1,
j;
5315 R->wanted_maxExp=(*iv)[2]*2+1;
5328 WerrorS(
"invalid combination of orderings");
5336 WerrorS(
"more than one ordering c/C specified");
5342 R->block0=(
int *)
omAlloc0(n*
sizeof(
int));
5343 R->block1=(
int *)
omAlloc0(n*
sizeof(
int));
5349 for (
j=0;
j < n-1;
j++)
5380 R->block0[n] =
last+1;
5383 R->wvhdl[n][
i-2] = (*iv)[
i];
5385 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5398 R->block0[n] =
last+1;
5400 else last += (*iv)[0];
5405 if (weights[
i]==0) weights[
i]=typ;
5417 const int s = (*iv)[2];
5427 const int s = (*iv)[2];
5429 if( 1 <
s ||
s < -1 )
return TRUE;
5445 R->block0[n] =
last+1;
5450 R->wvhdl[n][
i-2]=(*iv)[
i];
5452 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5454 last=
R->block0[n]-1;
5459 R->block0[n] =
last+1;
5462 if (
R->block1[n]-
R->block0[n]+2>=iv->
length())
5463 WarnS(
"missing module weights");
5464 for (
i=2;
i<=(
R->block1[n]-
R->block0[n]+2);
i++)
5466 R->wvhdl[n][
i-2]=(*iv)[
i];
5468 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5470 R->wvhdl[n][
i-2]=iv->
length() -3 -(
R->block1[n]-
R->block0[n]);
5473 R->wvhdl[n][
i-1]=(*iv)[
i];
5475 last=
R->block0[n]-1;
5480 R->block0[n] =
last+1;
5488 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5490 last=
R->block0[n]-1;
5497 if (
Mtyp==-1) typ = -1;
5501 R->wvhdl[n][
i-2]=(*iv)[
i];
5503 R->block0[n] =
last+1;
5506 for(
i=
R->block1[n];
i>=
R->block0[n];
i--)
5508 if (weights[
i]==0) weights[
i]=typ;
5518 Werror(
"Internal Error: Unknown ordering %d", (*iv)[1]);
5525 Werror(
"mismatch of number of vars (%d) and ordering (>=%d vars)",
5533 for(
i=1;
i<=
R->N;
i++)
5534 {
if (weights[
i]<0) {
R->OrdSgn=-1;
break; }}
5548 if (
R->block1[n] !=
R->N)
5559 R->block0[n] <=
R->N)
5561 R->block1[n] =
R->N;
5565 Werror(
"mismatch of number of vars (%d) and ordering (%d vars)",
5584 *
p = (
char*)sl->
name;
5637 const int P =
pn->listLength();
5646 const int pars =
pnn->listLength();
5652 WerrorS(
"parameter expected");
5671 int ch = (
int)(
long)
pn->Data();
5682 if ((ch<2)||(ch!=
ch2))
5684 Warn(
"%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5687 #ifndef TEST_ZN_AS_ZP
5698 cf->has_simple_Inverse=1;
5706 const int pars =
pnn->listLength();
5723 if ((ch!=0) && (ch!=
IsPrime(ch)))
5725 WerrorS(
"too many parameters");
5733 WerrorS(
"parameter expected");
5752 else if ((
pn->name !=
NULL)
5759 float_len=(
int)(
long)
pnn->Data();
5760 float_len2=float_len;
5764 float_len2=(
int)(
long)
pnn->Data();
5789 param.par_name=(
const char*)
"i";
5791 param.par_name = (
const char*)
pnn->name;
5798 else if ((
pn->name !=
NULL) && (
strcmp(
pn->name,
"integer") == 0))
5802 unsigned int modExponent = 1;
5814 modExponent = (
long)
pnn->Data();
5834 WerrorS(
"Wrong ground ring specification (module is 1)");
5837 if (modExponent < 1)
5839 WerrorS(
"Wrong ground ring specification (exponent smaller than 1");
5844 if (modExponent > 1 &&
cf ==
NULL)
5846 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
5857 WerrorS(
"modulus must not be 0 or parameter not allowed");
5863 info.exp= modExponent;
5872 WerrorS(
"modulus must not be 0 or parameter not allowed");
5878 info.exp= modExponent;
5888 if (r->qideal==
NULL)
5895 else if (
IDELEMS(r->qideal)==1)
5904 WerrorS(
"algebraic extension ring must have one minpoly");
5910 WerrorS(
"Wrong or unknown ground field specification");
5916 Print(
"pn[%p]: type: %d [%s]: %p, name: %s", (
void*)
p,
p->Typ(),
Tok2Cmdname(
p->Typ()),
p->Data(), (
p->name ==
NULL?
"NULL" :
p->name) );
5938 WerrorS(
"Invalid ground field specification");
5950 int l=
rv->listLength();
5962 WerrorS(
"name of ring variable expected");
6020 int l=
rv->listLength();
6032 WerrorS(
"name of ring variable expected");
6052 Werror(
"variable %d (%s) not in basering",
j+1,
R->names[
j]);
6065 for(
j=
R->block0[
i];
j<=
R->block1[
i];
j++)
6087 R->wvhdl[
i][perm[
j]-
R->block0[
i]]=
6114 R->order[
j-1]=
R->order[
j];
6115 R->block0[
j-1]=
R->block0[
j];
6116 R->block1[
j-1]=
R->block1[
j];
6118 R->wvhdl[
j-1]=
R->wvhdl[
j];
6126 while (
R->order[n]==0) n--;
6129 if (
R->block1[n] !=
R->N)
6140 R->block0[n] <=
R->N)
6142 R->block1[n] =
R->N;
6146 Werror(
"mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6147 R->N,
R->block1[n],n);
6176 if ((r->ref<=0)&&(r->order!=
NULL))
6186 if (
j==0)
WarnS(
"killing the basering for level 0");
6191 while (r->idroot!=
NULL)
6194 killhdl2(r->idroot,&(r->idroot),r);
6241 Warn(
"deleting denom_list for ring change from %s",
IDID(
h));
6318 for(
i=
I->nrows*
I->ncols-1;
i>=0;
i--)
6330 switch (
p->language)
6339 if(
p->libname!=
NULL)
6340 Print(
",%s",
p->libname);
6355 tmp_in.data=(
void*)(
long)(*aa)[
i];
6363 Werror(
"apply fails at index %d",
i+1);
6393 res->data=(
void *)
l;
6400 for(
int i=0;
i<=
aa->nr;
i++)
6412 Werror(
"apply fails at index %d",
i+1);
6443 WerrorS(
"first argument to `apply` must allow an index");
6489 snprintf(
ss,len,
"parameter def %s;return(%s);\n",a,
s);
6554 snprintf(
buf,250,
"wrong length of parameters(%d), expected ",t);
6557 for(
int i=1;
i<=
T[0];
i++)
6580 for(
int i=1;
i<=
l;
i++,args=args->
next)
6586 || (t!=args->
Typ()))
6609 Print(
" %s (%s) -> %s",
Rational pow(const Rational &a, int e)
struct for passing initialization parameters to naInitChar
void atSet(idhdl root, char *name, void *data, int typ)
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
unsigned char * proc[NUM_PROC]
poly singclap_resultant(poly f, poly g, poly x, const ring r)
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
matrix singclap_irrCharSeries(ideal I, const ring r)
int * Zp_roots(poly p, const ring r)
idhdl get(const char *s, int lev)
void show(int mat=0, int spaces=0) const
virtual ideal getMatrix()
complex root finder for univariate polynomials based on laguers algorithm
gmp_complex * getRoot(const int i)
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
bool solver(const int polishmode=PM_NONE)
Linear Programming / Linear Optimization using Simplex - Algorithm.
BOOLEAN mapFromMatrix(matrix m)
matrix mapToMatrix(matrix m)
Class used for (list of) interpreter objects.
void CleanUp(ring r=currRing)
INLINE_THIS void Init(int l=0)
Base class for solving 0-dim poly systems using u-resultant.
resMatrixBase * accessResMat()
vandermonde system solver for interpolating polynomials from their values
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
@ n_R
single prescision (6,6) real numbers
@ n_Q
rational (GMP) numbers
@ n_Znm
only used if HAVE_RINGS is defined
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
@ n_Zn
only used if HAVE_RINGS is defined
@ n_long_R
real floating point (GMP) numbers
@ n_Z2m
only used if HAVE_RINGS is defined
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
@ n_Z
only used if HAVE_RINGS is defined
@ n_long_C
complex floating point (GMP) numbers
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
const unsigned short fftable[]
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE char * nCoeffName(const coeffs cf)
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Creation data needed for finite fields.
const CanonicalForm int s
const Variable & v
< [in] a sqrfree bivariate poly
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
void WerrorS(const char *s)
VAR char my_yylinebuf[80]
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
int iiTestConvert(int inputType, int outputType)
const char * iiTwoOps(int t)
const char * Tok2Cmdname(int tok)
static int RingDependend(int t)
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hKill(monf xmem, int Nvar)
void hDelete(scfmon ev, int ev_length)
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
scfmon hInit(ideal S, ideal Q, int *Nexist)
void hRadical(scfmon rad, int *Nrad, int Nvar)
#define idDelete(H)
delete an ideal
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
#define IMATELEM(M, I, J)
int IsCmd(const char *n, int &tok)
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
idhdl ggetid(const char *n)
void killhdl2(idhdl h, idhdl *ih, ring r)
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
VAR proclevel * procstack
idhdl packFindHdl(package r)
EXTERN_VAR omBin sleftv_bin
INST_VAR sleftv iiRETURNEXPR
char * iiGetLibProcBuffer(procinfo *pi, int part)
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
lists rDecompose(const ring r)
@ semicListWrongNumberOfNumerators
@ semicListFirstElementWrongType
@ semicListSecondElementWrongType
@ semicListFourthElementWrongType
@ semicListWrongNumberOfDenominators
@ semicListThirdElementWrongType
@ semicListWrongNumberOfMultiplicities
@ semicListFifthElementWrongType
@ semicListSixthElementWrongType
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
lists rDecompose_list_cf(const ring r)
int iiOpsTwoChar(const char *s)
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
BOOLEAN jjMINRES(leftv res, leftv v)
BOOLEAN killlocals_list(int v, lists L)
BOOLEAN iiParameter(leftv p)
STATIC_VAR BOOLEAN iiNoKeepRing
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
static void rRenameVars(ring R)
void iiCheckPack(package &p)
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
VAR BOOLEAN iiDebugMarker
ring rInit(leftv pn, leftv rv, leftv ord)
leftv iiMap(map theMap, const char *what)
int iiRegularity(lists L)
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
static void rDecomposeC_41(leftv h, const coeffs C)
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
BOOLEAN iiARROW(leftv r, char *a, char *s)
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
BOOLEAN syBetti1(leftv res, leftv u)
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
static void rDecomposeC(leftv h, const ring R)
int exprlist_length(leftv v)
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
poly iiHighCorner(ideal I, int ak)
BOOLEAN spectrumfProc(leftv result, leftv first)
lists listOfRoots(rootArranger *self, const unsigned int oprec)
static void jjINT_S_TO_ID(int n, int *e, leftv res)
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
BOOLEAN jjCHARSERIES(leftv res, leftv u)
void rDecomposeCF(leftv h, const ring r, const ring R)
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
void list_error(semicState state)
BOOLEAN mpJacobi(leftv res, leftv a)
const char * iiTwoOps(int t)
BOOLEAN iiBranchTo(leftv, leftv args)
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
BOOLEAN iiTestAssume(leftv a, leftv b)
void iiSetReturn(const leftv source)
BOOLEAN iiAssignCR(leftv r, leftv arg)
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
spectrumState spectrumCompute(poly h, lists *L, int fast)
idhdl rFindHdl(ring r, idhdl n)
syStrategy syConvList(lists li)
BOOLEAN spectrumProc(leftv result, leftv first)
BOOLEAN iiDefaultParameter(leftv p)
void rComposeC(lists L, ring R)
BOOLEAN iiCheckRing(int i)
#define BREAK_LINE_LENGTH
static void rDecomposeRing_41(leftv h, const coeffs C)
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
ring rSubring(ring org_ring, sleftv *rv)
BOOLEAN kWeight(leftv res, leftv id)
static leftv rOptimizeOrdAsSleftv(leftv ord)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
spectrum spectrumFromList(lists l)
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
static void iiReportTypes(int nr, int t, const short *T)
void rDecomposeRing(leftv h, const ring R)
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
static BOOLEAN iiInternalExport(leftv v, int toLev)
static void rDecompose_23456(const ring r, lists L)
void copy_deep(spectrum &spec, lists l)
void killlocals_rec(idhdl *root, int v, ring r)
semicState list_is_spectrum(lists l)
static void killlocals0(int v, idhdl *localhdl, const ring r)
BOOLEAN semicProc(leftv res, leftv u, leftv v)
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
const char * lastreserved
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
BOOLEAN iiWRITE(leftv, leftv v)
void paPrint(const char *n, package p)
static resolvente iiCopyRes(resolvente r, int l)
BOOLEAN kQHWeight(leftv res, leftv v)
void rComposeRing(lists L, ring R)
BOOLEAN iiExport(leftv v, int toLev)
BOOLEAN jjBETTI(leftv res, leftv u)
void spectrumPrintError(spectrumState state)
lists getList(spectrum &spec)
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
static BOOLEAN rComposeVar(const lists L, ring R)
const struct sValCmd1 dArith1[]
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
VAR denominator_list DENOMINATOR_LIST
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
char * lString(lists l, BOOLEAN typed, int dim)
BOOLEAN lRingDependend(lists L)
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
static matrix mu(matrix A, const ring R)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
#define MATELEM(mat, i, j)
1-based access to matrix
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
ideal loNewtonPolytope(const ideal id)
EXTERN_VAR size_t gmp_output_digits
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
gmp_float sqrt(const gmp_float &a)
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nPrint(a)
only for debug, over any initalized currRing
#define SHORT_REAL_LENGTH
#define omFreeSize(addr, size)
#define omCheckAddr(addr)
#define omReallocSize(addr, o_size, size)
#define omCheckAddrSize(addr, size)
#define omFreeBin(addr, bin)
#define omFreeBinAddr(addr)
#define omRealloc0Size(addr, o_size, size)
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
static int pLength(poly a)
#define __pp_Mult_nn(p, n, r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static void p_Setm(poly p, const ring r)
static void p_Delete(poly *p, const ring r)
static poly p_Init(const ring r, omBin bin)
static poly p_Copy(poly p, const ring r)
returns a copy of p
static long p_Totaldegree(poly p, const ring r)
#define __p_Mult_nn(p, n, r)
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatibility layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
#define pIsConstant(p)
like above, except that Comp must be 0
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
#define pGetVariables(p, e)
#define pGetExp(p, i)
Exponent.
#define pCopy(p)
return a copy of the poly
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
const char * rSimpleOrdStr(int ord)
int rTypeOfMatrixOrder(const intvec *order)
ring rAssure_HasComp(const ring r)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
BOOLEAN rCheckIV(const intvec *iv)
rRingOrder_t rOrderName(char *ordername)
void rDelete(ring r)
unconditionally deletes fields in r
ring rDefault(const coeffs cf, int N, char **n, int ord_size, rRingOrder_t *ord, int *block0, int *block1, int **wvhdl, unsigned long bitmask)
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
void rSetSyzComp(int k, const ring r)
static BOOLEAN rField_is_R(const ring r)
static BOOLEAN rField_is_Zp_a(const ring r)
static BOOLEAN rField_is_Z(const ring r)
static BOOLEAN rField_is_Zp(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static BOOLEAN rField_is_long_C(const ring r)
static int rBlocks(const ring r)
static ring rIncRefCnt(ring r)
static BOOLEAN rField_is_Zn(const ring r)
static int rPar(const ring r)
(r->cf->P)
static int rInternalChar(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_a64
for int64 weights
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
@ ringorder_IS
Induced (Schreyer) ordering.
static BOOLEAN rField_is_Q_a(const ring r)
static BOOLEAN rField_is_Q(const ring r)
static void rDecRefCnt(ring r)
static char const ** rParameter(const ring r)
(r->cf->parameter)
static BOOLEAN rField_is_long_R(const ring r)
static BOOLEAN rField_is_numeric(const ring r)
static BOOLEAN rField_is_GF(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
#define rField_is_Ring(R)
int status int void size_t count
int status int void * buf
BOOLEAN slWrite(si_link l, leftv v)
ideal idInit(int idsize, int rank)
initialise an ideal / module
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
BOOLEAN hasAxis(ideal J, int k, const ring r)
int hasOne(ideal J, const ring r)
BOOLEAN ringIsLocal(const ring r)
static BOOLEAN hasConstTerm(poly h, const ring r)
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
static BOOLEAN hasLinearTerm(poly h, const ring r)
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
INST_VAR sleftv sLastPrinted
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
void syMinimizeResolvente(resolvente res, int length, int first)
void syKillComputation(syStrategy syzstr, ring r=currRing)
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
void syKillEmptyEntres(resolvente res, int length)
struct for passing initialization parameters to naInitChar
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)